First Eigenvalue of p-Laplacian Along The Normalized Ricci Flow on Bianchi Classes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Some Asymptotic Behavior of the First Eigenvalue along the Ricci Flow

The study of behavior of the eigenvalues of differential operators along the flow of metrics is very active. We list a few such studies as follows. Perelman [9] proved the monotonicity of the first eigenvalue of the operator −∆ + 1 4 R along the Ricci flow by using his entropy and was then able to rule out nontrivial steady or expanding breathers on compact manifolds. X. Cao [1] and J. F. Li [6...

متن کامل

The (normalized) Laplacian Eigenvalue of Signed Graphs

Abstract. A signed graph Γ = (G, σ) consists of an unsigned graph G = (V, E) and a mapping σ : E → {+,−}. Let Γ be a connected signed graph and L(Γ),L(Γ) be its Laplacian matrix and normalized Laplacian matrix, respectively. Suppose μ1 ≥ · · · ≥ μn−1 ≥ μn ≥ 0 and λ1 ≥ · · · ≥ λn−1 ≥ λn ≥ 0 are the Laplacian eigenvalues and the normalized Laplacian eigenvalues of Γ, respectively. In this paper, ...

متن کامل

Normalized Ricci Flow on Nonparabolic Surfaces

This paper studies normalized Ricci flow on a nonparabolic surface, whose scalar curvature is asymptotically −1 in an integral sense. By a method initiated by R. Hamilton, the flow is shown to converge to a metric of constant scalar curvature −1. A relative estimate of Green’s function is proved as a tool.

متن کامل

A New Upper Bound on the Largest Normalized Laplacian Eigenvalue

Abstract. Let G be a simple undirected connected graph on n vertices. Suppose that the vertices of G are labelled 1,2, . . . ,n. Let di be the degree of the vertex i. The Randić matrix of G , denoted by R, is the n× n matrix whose (i, j)−entry is 1 √ did j if the vertices i and j are adjacent and 0 otherwise. The normalized Laplacian matrix of G is L = I−R, where I is the n× n identity matrix. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Indonesian Mathematical Society

سال: 2020

ISSN: 2460-0245,2086-8952

DOI: 10.22342/jims.26.3.934.380-392